artdaq - Idea #7244

Create a reusable UDP FragmentGenerator
10/30/2014 12:08 PM - Kurt Biery

Status: Closed Start date: 10/30/2014
Priority: Normal Due date:

Assignee: Eric Flumerfelt % Done: 90%
Category: Estimated time: 40.00 hours
Target version: vi_12_13

Experiment: -

Description

In our discussions with potential artdaq users, we've heard that it would be nice to have artdaq easily handle the receiving of UDP
data packets from hardware modules. Given that, it would probably be worthwhile to create a simple UDP packet
FragmentGenerator that would listen for UDP packets and stuff them into artdaq::Fragments, as usual. If we make this
FragmentGenerator part of the artdaq package, then it could simply be used out-of-the-box when someone wants such functionality.

Of course, there should probably be associated work to define some of the details of the UDP packet. For example, if the UDP
packets that are sent to this FragmentGenerator all have a sequence number in a well-defined place, the FragmentGenerator could
use that as the artdaqg::Fragment sequence number, or at least cross-check the two.

History

#1 - 10/30/2014 12:09 PM - Kurt Biery
- Estimated time set to 40.00 h

#2 - 11/21/2014 04:58 PM - Eric Flumerfelt

- Assignee set to Eric Flumerfelt

#3 - 05/04/2015 01:07 PM - Kurt Biery
- Target version changed from 577 to vi1_12_10

#4 - 05/04/2015 01:41 PM - Eric Flumerfelt

The implementation of a UDPReceiver_generator class has been done for the OTS DAQ proof-of-concept (

https: vs.fnal.gov/redmine/proj ). Once the reference implementation is complete, it will be ported into one of the artdaq repositories
(probably artdag-demo). The UDPReceiver_generator implements the CAPTAN UDP protocol, which uses the first two bytes out of a standard MTU
1500 UDP packet to describe the data, and the rest of the packet is user-configured data payload.

A summary of the CAPTAN protocol:

Control Packet: From ARTDAQ to UDP-sending hardware:

Byte 0: OpCode: Defined values:

0 Read Register
1 Write Register
2 Burst Data Start (Start Run)
3 Burst Data Stop (End Run)

Byte 1: CmdSize: Size of data to Read/Write (if Write, data is from the payload of the packet)
Bytes 2-9: Address: 64-bit register address for Read/Write

Data packet: From UDP-sending hardware to software:
Byte 0: Packet Type:
First Hex: Data stream type:

0 Read Response
1 First in burst

2 Mid-burst

3 Last in burst

01/21/2021 1/2


https://cdcvs.fnal.gov/redmine/projects/otsdaqpoc

Second Hex: Data payload format:

0 Raw data

1 JSON string data

Byte 1: Sequence ID: Should increment for each packet sent (for UDP QOS, increments mid-burst as well)

#5 - 06/02/2015 05:49 AM - Kurt Biery

- Target version changed from vi1_12_10tov1_12_11

#6 - 06/05/2015 10:04 AM - Eric Flumerfelt
- Status changed from New to Assigned

- % Done changed from 0 to 90

Code has been imported from artdag-ots to artdag-demo (branch feature/UDPReceiver). A corresponding UDPFragment class has also been created
for artdag-core-demo (same branch name). The code should be vetted before being included in the official artdag-demo releases.

#7 - 08/03/2015 10:42 AM - Kurt Biery

- Target version changed from v1_12_11tovi_12_13

#8 - 10/30/2015 09:37 AM - Kurt Biery

- Status changed from Assigned to Resolved

This functionality has been available in the artdag-demo for some time.

#9 - 05/23/2016 10:23 AM - Eric Flumerfelt

- Status changed from Resolved to Closed

01/21/2021 22


http://www.tcpdf.org

